Skip to the content

Data Storage

Data Storage | Hysitron, Inc.
Data Storage | Hysitron, Inc.

Quantitative Nanomechanical, Nanotribological, and Interfacial Adhesion Characterization of Ultra-Thin DLC Films

One effective methodology for increasing the data density of magnetic storage media is to decrease the distance from the bottom of the read-write head to the top of the magnetic media on the disk. The smaller the head-media spacing (HMS), the higher the read-write signal integrity is at large areal densities. New generations of magnetic storage media with constantly increasing data densities requires the integration and control of new ultra-thin DLC coatings and protective films/lubricants. Future magnetic data storage technologies involve heat-assisted magnetic recording and bit-patterned recording to increase data density.

The mechanical and tribological performance of these ultra-thin DLC films is of critical importance to minimize or eliminate damage due to a slider/disk crash. DLC films can have a broad spectrum of mechanical and tribological properties due to a mixed structure of C-C sp2 and sp3 bonding. The ability to quantitatively characterize the nanomechanical and nanotribological performance of these films, oftentimes only a few atomic layers in thickness, enables engineers to optimize chemistries and processes to achieve a high degree of tetrahedral bonding. Additionally, the ability to quantitatively measure the DLC/undercoat/media interfacial adhesion is critical to product reliability.

Hysitron has a long history in characterizing ultra-thin DLC coatings used in the magnetic data storage industry and continually develops next-generation technologies for nanomechanical and nanotribological characterization in these areas. New transducer technologies have enabled quantitative, rigid probe nanoindentation at length scales previously impossible. Combined with patented models to provide substrate-free, film-only mechanical properties, new levels of DLC performance can be achieved. Additionally, nanoscale scratch measurements provide quantitative friction and scratch resistance measurements and can be used to simulate head-media crashes and evaluate deformation severity in a production environment. 

 Test Equipment for Ultra-Thin DLC Film Characterization

Data Storage Applications Examples